Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
J Biosci Bioeng ; 137(1): 31-37, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981488

RESUMO

As industrial shochu yeast is a diploid strain, obtaining a strain with mutations in both allelic genes was considered difficult. We investigated a method for disrupting two copies of a homozygous gene with a single transformation. We designed a disruption cassette containing an intact LYS5 flanked by nonfunctional ura3 gene fragments divided into the 5'- and 3'-regions. These fragments had overlapping sequences that enabled LYS5 removal as well as URA3 regeneration through loop-out. Furthermore, both ends of the disruption cassette had an additional repeat sequence that allowed the cassette to be removed from the chromosome through loop-out. First, 45 bases of 5'- and 3'-regions of target gene sequences were added on both ends of this cassette using polymerase chain reaction; the resultant disruption cassette was introduced into a shochu yeast strain (ura3/ura3 lys5/lys5); then, single allele disrupted strains were selected on Lys drop-out plates; and after cultivation in YPD medium, double-disrupted strains, in which replacement of another allelic gene with disruption cassette by loss of heterozygosity and regeneration of URA3 in one of the cassettes by loop-out, were obtained by selection on Ura and Lys drop-out plates. The disruption cassettes were removed from the double-disrupted strain via loop-out between repeat sequences in the disruption cassette. The strains that lost either URA3 or LYS5 were counter-selected on 5-fluoroorotic acid or α-amino adipic acid plates, respectively. Using this method, we obtained leu2/leu2 and leu2/leu2 his3/his3 strains in shochu yeast, demonstrating the effectiveness and repeatability of this gene disruption technique in diploid yeast Saccharomyces cerevisiae.


Assuntos
Proteínas Fúngicas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas Fúngicas/genética , Diploide , Reação em Cadeia da Polimerase , Mutação
2.
Virus Res ; 340: 199301, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38096954

RESUMO

Heartland virus (HRTV) causes generalized symptoms, severe shock, and multiple organ failure. We previously reported that interferon-α/ß receptor knockout (IFNAR-/-) mice infected intraperitoneally with 1 × 107 tissue culture-infective dose (TCID50) of HRTV died, while those subcutaneously infected with the same dose of HRTV did not. The pathophysiology of IFNAR-/- mice infected with HRTV and the mechanism underlying the difference in disease severity, which depends on HRTV infection route, were analyzed in this study. The liver, spleen, mesenteric and axillary lymph nodes, and gastrointestinal tract of intraperitoneally (I.P.) infected mice had pathological changes; however, subcutaneously (S.C.) infected mice only had pathological changes in the axillary lymph node and gastrointestinal tract. HRTV RNA levels in the mesenteric lymph node, lung, liver, spleen, kidney, stomach, intestine, and blood were significantly higher in I.P. infected mice than those in S.C. infected mice. Chemokine ligand-1 (CXCL-1), tumor necrosis factor (TNF)-α, interleukin (IL)-12, interferon (IFN)-γ, and IL-10 levels in plasma of I.P. infected mice were higher than those of S.C. infected mice. These results indicated that high levels of viral RNA and the induction of inflammatory responses in HRTV-infected IFNAR-/- mice may be associated with disease severity.


Assuntos
Bunyaviridae , Interferon Tipo I , Receptor de Interferon alfa e beta , Animais , Camundongos , Receptor de Interferon alfa e beta/genética , Camundongos Knockout , Interferons , Fígado , Interleucina-12
3.
J Infect Chemother ; 29(5): 469-474, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36702208

RESUMO

Dengue is a febrile illness caused by the dengue virus (DENV) that belongs to the genus Flavivirus in the family Flaviviridae. Cross-reactivity between flaviviruses poses a challenge while interpreting serological test results. In the present study, the cross-reactivity of sera of the patients with dengue, who traveled from Japan to DENV-endemic countries, was analyzed by using an enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). Sixteen serum samples were collected from patients with dengue and were tested for: i) IgM antibodies against Zika virus (ZIKV), West Nile virus (WNV), Japanese encephalitis virus (JEV), and tick-borne encephalitis virus (TBEV) using IgM ELISA, ii) IgG antibody against TBEV using IgG ELISA, and iii) neutralizing antibody against ZIKV, WNV, TBEV, and JEV. Among the 16 samples tested using ELISA, seven samples were IgM-positive for at least one of the other flaviviruses, and nine samples were IgG-positive for TBEV. Neutralizing antibody titers (NATs) against ZIKV, WNV, and TBEV were one-fourth or lower than those against the causative DENV in all samples. The NATs against JEV were one-fourth or lower than those against the causative DENV in six convalescent-phase serum sample among the seven convalescent-phase serum samples. The NAT against DENV of the residual one convalescent-phase serum was similar to that against JEV and that against JEV of its relevant acute-phase serum sample. These results showed that NTs with paired serum samples are important to correctly interpret the serological test results for DENV.


Assuntos
Vírus da Dengue , Dengue , Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Transmitidos por Carrapatos , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Humanos , Testes de Neutralização/métodos , Anticorpos Antivirais , Testes Sorológicos , Anticorpos Neutralizantes , Ensaio de Imunoadsorção Enzimática , Reações Cruzadas , Imunoglobulina G , Dengue/diagnóstico , Imunoglobulina M
4.
Viruses ; 15(1)2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36680278

RESUMO

Genotype IV Japanese encephalitis (JE) virus (GIV JEV) is the least common and most neglected genotype in JEV. We evaluated the growth and pathogenic potential of the GIV strain 19CxBa-83-Cv, which was isolated from a mosquito pool in Bali, Indonesia, in 2019, and serological analyses were also conducted. The growth ability of 19CxBa-83-Cv in Vero cells was intermediate between that of the genotype I (GI) strain Mie/41/2002 and the genotype V (GV) strain Muar, whereas 19CxBa-83-Cv and Mie/41/2002 grew faster than Muar in mouse neuroblastoma cells. The neuroinvasiveness of 19CxBa-83-Cv in mice was higher than that of Mie/41/2002 but lower than that of Muar; however, there were no significant differences in neurovirulence in mice among the three strains. The neutralizing titers of sera from 19CxBa-83-Cv- and Mie/41/2002-inoculated mice against 19CxBa-83-Cv and Mie/41/2002 were similar, whereas the titers against Muar were lower than those of the other two viruses. The neutralizing titers of JE vaccine-inoculated mouse pool serum against 19CxBa-83-Cv and Muar were significantly lower than those against Mie/41/2002. The neutralizing titers against the three viruses were similar in three out of the five serum samples from GI-infected JE patients, although the titers against Mie/41/2002 were higher than those against 19CxBa-83-Cv and Muar in the remaining two sera samples. In summary, we identified the basic characteristics of 19CxBa-83-Cv, but further studies are needed to better understand GIV JEV.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vírus da Encefalite Japonesa (Subgrupo) , Encefalite Japonesa , Chlorocebus aethiops , Animais , Camundongos , Anticorpos Neutralizantes , Células Vero , Anticorpos Antivirais , Genótipo
5.
J Oleo Sci ; 71(9): 1403-1412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047244

RESUMO

Clove, a dried flower buds of Syzygium aromaticum, is used in traditional medicine, for culinary purposes, and in essential oil production. In our preliminary screening of crude drugs used in Japanese Kampo formulas, a methanol (MeOH) extract of clove buds was found to exhibit a melanin induction. To date, the effects of clove buds or their constituents on the activation of melanogenesis remain unclear. Thus, this study aimed to isolate active compounds from the MeOH extract of clove buds associated with melanin synthesis in melanoma cells and to investigate the molecular mechanism involved. The MeOH extract of clove buds increased melanin content in murine B16-F1 melanoma cells. To identify the active compounds responsible for melanin induction, the MeOH extract was suspended in water and successively partitioned using hexane, ethyl acetate (EtOAc), and n-butanol (n-BuOH). Comparative analysis revealed that the EtOAc fraction induced melanin synthesis. Bioassay-guided separation of the EtOAc fraction isolated three compounds including eugenol. The analysis of structure-activity relationships of eugenol and structurally related compounds indicated that eugenol was the most potent melanin inducer among the 11 compounds, and that a hydroxyl group at C-1 and a methoxy group at C-2 may contribute to melanin induction. Eugenol induced melanin synthesis in human HMV-II melanoma cells as well as in B16-F1 cells. Further analysis indicated that eugenol may invoke intracellular tyrosinase activity and expression of tyrosinase, tyrosinaserelated protein (TRP)-1, TRP-2, and microphthalmia-associated transcription factor (MITF). These results suggest that eugenol enhances melanin synthesis by upregulating the expression of MITF and subsequent expression of melanogenic enzymes, and that it may be a potent therapeutic agent for hypopigmentation.


Assuntos
Melanoma Experimental , Syzygium , Animais , Bioensaio , Eugenol/farmacologia , Eugenol/uso terapêutico , Humanos , Melaninas , Melanoma Experimental/metabolismo , Metanol , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Extratos Vegetais/farmacologia , Syzygium/metabolismo
6.
Biochem Biophys Res Commun ; 616: 41-48, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35636254

RESUMO

RipAY, an effector protein from the plant bacterial pathogen Ralstonia solanacearum, exhibits γ-glutamyl cyclotransferase (GGCT) activity to degrade the host cellular glutathione (GSH) when stimulated by host eukaryotic-type thioredoxins (Trxs). Aave_4606 from Acidovorax citrulli, the causal agent of bacterial fruit blotch of cucurbit plants, shows significant homology to RipAY. Based on its homology, it was predicted that the GGCT activity of Aave_4606 is also stimulated by host Trxs. The GGCT activity of a recombinant Aave_4606 protein was investigated in the presence of various Trxs, such as yeast (ScTrx1), Arabidopsis thaliana (AtTrx-h1, AtTrx-h2, AtTrx-h3, and AtTrx-h5), or watermelon (Cla022460/ClTrx). Unlike RipAY, the GGCT activity of Aave_4606 is stimulated only by AtTrx-h1, AtTrx-h3, AtTrx-h5 and ClTrx from a watermelon, the primary host of A. citrulli, but not by ScTrx1, AtTrx-h2. Interestingly, GGCT activity of Aave_4606 is more efficiently stimulated by AtTrx-h1 and ClTrx than AtTrx-h5. These results suggested that Aave_4606 recognizes host-specific Trxs, which specifically activates the GGCT activity of Aave_4606 to decrease the host cellular GSH. These findings provide new insights into that effector is one of the host-range determinants for pathogenic bacteria via its host-dependent activation.


Assuntos
Arabidopsis , Comamonadaceae , Ralstonia solanacearum , Arabidopsis/metabolismo , Comamonadaceae/metabolismo , Frutas/metabolismo , Glutationa/metabolismo , Plantas/metabolismo , Ralstonia solanacearum/fisiologia , Tiorredoxinas/metabolismo
7.
J Virol ; 96(7): e0004922, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35319224

RESUMO

Heartland bandavirus (HRTV), which is an emerging tick-borne virus first identified in Missouri in 2009, causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. HRTV is genetically close to Dabie bandavirus, which is the causative agent of severe fever with thrombocytopenia syndrome (SFTS) in humans and is known as SFTS virus (SFTSV). The generation of infectious HRTV entirely from cloned cDNAs has not yet been reported. The absence of a reverse genetics system for HRTV has delayed efforts to understand its pathogenesis and to generate vaccines and antiviral drugs. Here, we developed a reverse genetics system for HRTV, which employs an RNA polymerase I-mediated expression system. A recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO) was generated. We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. The rHRTV-NSsKO was highly attenuated, indicated by the apparent absence of symptoms in a mouse model of HRTV infection. Moreover, mice immunized with rHRTV-NSsKO survived a lethal dose of HRTV. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV. IMPORTANCE Heartland bandavirus (HRTV) is a tick-borne virus identified in the United States in 2009. HRTV causes fever, fatigue, decreased appetite, headache, nausea, diarrhea, and muscle or joint pain in humans. FDA-approved vaccines and antiviral drugs are unavailable. The lack of a reverse genetics system hampers efforts to develop such antiviral therapeutics. Here, we developed a reverse genetics system for HRTV that led to the generation of a recombinant nonstructural protein (NSs)-knockout HRTV (rHRTV-NSsKO). We found that NSs interrupted signaling associated with innate immunity in HRTV-infected cells. Furthermore, rHRTV-NSsKO was highly attenuated and immunogenic in a mouse model. These findings suggest that NSs is a virulence factor of HRTV and that rHRTV-NSsKO could be a vaccine candidate for HRTV.


Assuntos
Phlebovirus , Genética Reversa , Proteínas não Estruturais Virais , Animais , Antivirais/metabolismo , Artralgia , Bunyaviridae/genética , Bunyaviridae/imunologia , Bunyaviridae/patogenicidade , Diarreia , Fadiga , Cefaleia , Humanos , Imunidade Inata/imunologia , Camundongos , Náusea , Phlebovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Genética Reversa/métodos , Transdução de Sinais/imunologia , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Virulência/genética , Fatores de Virulência/genética
8.
Elife ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119362

RESUMO

Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.


Assuntos
Granzimas/genética , Camundongos Knockout/genética , NADP Trans-Hidrogenases/genética , Animais , Artrite/virologia , Febre de Chikungunya/genética , Vírus Chikungunya , Modelos Animais de Doenças , Patrimônio Genético , Genótipo , Granzimas/metabolismo , Camundongos Endogâmicos C57BL , NADP Trans-Hidrogenases/metabolismo
9.
Sci Rep ; 11(1): 19635, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608212

RESUMO

Zika virus (ZIKV) is a mosquito-borne flavivirus that causes febrile illness. The recent spread of ZIKV from Asia to the Americas via the Pacific region has revealed unprecedented features of ZIKV, including transplacental congenital infection causing microcephaly. Amino acid changes have been hypothesized to underlie the spread and novel features of American ZIKV strains; however, the relationship between genetic changes and the epidemic remains controversial. A comparison of the characteristics of a Southeast Asian strain (NIID123) and an American strain (PRVABC59) revealed that the latter had a higher replication ability in cultured cells and higher virulence in mice. In this study, we aimed to identify the genetic region of ZIKV responsible for these different characteristics using reverse genetics. A chimeric NIID123 strain in which the E protein was replaced with that of PRVABC59 showed a lower growth ability than the recombinant wild-type strain. Adaptation of the chimeric NIID123 to Vero cells induced a Phe-to-Leu amino acid substitution at position 146 of the prM protein; PRVABC59 also has Leu at this position. Leu at this position was found to be responsible for the viral replication ability and partially, for the pathogenicity in mouse testes.


Assuntos
Substituição de Aminoácidos , Interações Hospedeiro-Patógeno , Mutação , Proteínas do Envelope Viral/genética , Infecção por Zika virus/virologia , Zika virus/genética , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Genoma Viral , Genômica/métodos , Camundongos , Células Vero , Virulência , Replicação Viral , Zika virus/patogenicidade , Infecção por Zika virus/patologia
10.
Vaccines (Basel) ; 9(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34696184

RESUMO

Genotype V (GV) Japanese encephalitis virus (JEV) has emerged in Korea and China since 2009. Recent findings suggest that current Japanese encephalitis (JE) vaccines may reduce the ability to induce neutralizing antibodies against GV JEV compared to other genotypes. This study sought to produce a novel live attenuated JE vaccine with a high efficacy against GV JEV. Genotype I (GI)-GV intertypic recombinant strain rJEV-EXZ0934-M41 (EXZ0934), in which the E region of the GI Mie/41/2002 strain was replaced with that of GV strain XZ0934, was introduced with the same 10 attenuation substitutions in the E region found in the live attenuated JE vaccine strain SA 14-14-2 to produce a novel mutant virus rJEV-EXZ/SA14142m-M41 (EXZ/SA14142m). In addition, another mutant rJEV-EM41/SA14142m-M41 (EM41/SA14142m), which has the same substitutions in the Mie/41/2002, was also produced. The neuroinvasiveness and neurovirulence of the two mutant viruses were significantly reduced in mice. The mutant viruses induced neutralizing antibodies against GV JEV in mice. The growth of EXZ/SA14142m was lower than that of EM41/SA14142m. In mouse challenge tests, a single inoculation with a high dose of the mutants blocked lethal GV JEV infections; however, the protective efficacy of EXZ/SA14142m was weaker than that of EM41/SA14142m in low-dose inoculations. The lower protection potency of EXZ/SA14142m may be ascribed to the reduced growth ability caused by the attenuation mutations.

11.
Viruses ; 13(9)2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34578389

RESUMO

Zika virus (ZIKV) infection during pregnancy causes a wide spectrum of congenital abnormalities and postnatal developmental sequelae such as fetal loss, intrauterine growth restriction (IUGR), microcephaly, or motor and neurodevelopmental disorders. Here, we investigated whether a mouse pregnancy model recapitulated a wide range of symptoms after congenital ZIKV infection, and whether the embryonic age of congenital infection changed the fetal or postnatal outcomes. Infection with ZIKV strain PRVABC59 from embryonic day 6.5 (E6.5) to E8.5, corresponding to the mid-first trimester in humans, caused fetal death, fetal resorption, or severe IUGR, whereas infection from E9.5 to E14.5, corresponding to the late-first to second trimester in humans, caused stillbirth, neonatal death, microcephaly, and postnatal growth deficiency. Furthermore, 4-week-old offspring born to dams infected at E12.5 showed abnormalities in neuropsychiatric state, motor behavior, autonomic function, or reflex and sensory function. Thus, our model recapitulated the multiple symptoms seen in human cases, and the embryonic age of congenital infection was one of the determinant factors of offspring outcomes in mice. Furthermore, maternal neutralizing antibodies protected the offspring from neonatal death after congenital infection at E9.5, suggesting that neonatal death in our model could serve as criteria for screening of vaccine candidates.


Assuntos
Feto/virologia , Microcefalia/virologia , Malformações do Sistema Nervoso/virologia , Infecção por Zika virus/congênito , Zika virus/patogenicidade , Animais , Modelos Animais de Doenças , Embrião de Mamíferos/virologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
12.
Viruses ; 13(7)2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209295

RESUMO

Ebolaviruses and marburgviruses are filoviruses that are known to cause severe hemorrhagic fever in humans and nonhuman primates (NHPs). While some bat species are suspected to be natural reservoirs of these filoviruses, wild NHPs often act as intermediate hosts for viral transmission to humans. Using an enzyme-linked immunosorbent assay, we screened two NHP species, wild baboons and vervet monkeys captured in Zambia, for their serum IgG antibodies specific to the envelope glycoproteins of filoviruses. From 243 samples tested, 39 NHPs (16%) were found to be seropositive either for ebolaviruses or marburgviruses with endpoint antibody titers ranging from 100 to 25,600. Interestingly, antibodies reactive to Reston virus, which is found only in Asia, were detected in both NHP species. There was a significant difference in the seropositivity for the marburgvirus antigen between the two NHP species, with baboons having a higher positive rate. These results suggest that wild NHPs in Zambia might be nonlethally exposed to these filoviruses, and this emphasizes the need for continuous monitoring of filovirus infection in wild animals to better understand the ecology of filoviruses and to assess potential risks of outbreaks in humans in previously nonendemic countries.


Assuntos
Anticorpos Antivirais/sangue , Infecções por Filoviridae/imunologia , Infecções por Filoviridae/veterinária , Filoviridae/imunologia , Primatas/virologia , Animais , Animais Selvagens/virologia , Chlorocebus aethiops/virologia , Ebolavirus/imunologia , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Filoviridae/classificação , Filoviridae/isolamento & purificação , Infecções por Filoviridae/epidemiologia , Humanos , Imunoglobulina G/sangue , Masculino , Marburgvirus/imunologia , Papio/virologia , Estudos Soroepidemiológicos , Zâmbia/epidemiologia
13.
PLoS Pathog ; 17(7): e1009788, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34310650

RESUMO

Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/ß receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.


Assuntos
Proteínas do Envelope Viral/genética , Virulência/genética , Infecção por Zika virus/virologia , Zika virus/genética , Zika virus/patogenicidade , Animais , Barreira Hematoencefálica , Permeabilidade Capilar , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Zika virus/metabolismo
14.
PLoS Biol ; 19(4): e3001201, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33872300

RESUMO

Most vertebrate RNA viruses show pervasive suppression of CpG and UpA dinucleotides, closely resembling the dinucleotide composition of host cell transcriptomes. In contrast, CpG suppression is absent in both invertebrate mRNA and RNA viruses that exclusively infect arthropods. Arthropod-borne (arbo) viruses are transmitted between vertebrate hosts by invertebrate vectors and thus encounter potentially conflicting evolutionary pressures in the different cytoplasmic environments. Using a newly developed Zika virus (ZIKV) model, we have investigated how demands for CpG suppression in vertebrate cells can be reconciled with potentially quite different compositional requirements in invertebrates and how this affects ZIKV replication and transmission. Mutant viruses with synonymously elevated CpG or UpA dinucleotide frequencies showed attenuated replication in vertebrate cell lines, which was rescued by knockout of the zinc-finger antiviral protein (ZAP). Conversely, in mosquito cells, ZIKV mutants with elevated CpG dinucleotide frequencies showed substantially enhanced replication compared to wild type. Host-driven effects on virus replication attenuation and enhancement were even more apparent in mouse and mosquito models. Infections with CpG- or UpA-high ZIKV mutants in mice did not cause typical ZIKV-induced tissue damage and completely protected mice during subsequent challenge with wild-type virus, which demonstrates their potential as live-attenuated vaccines. In contrast, the CpG-high mutants displayed enhanced replication in Aedes aegypti mosquitoes and a larger proportion of mosquitoes carried infectious virus in their saliva. These findings show that mosquito cells are also capable of discriminating RNA based on dinucleotide composition. However, the evolutionary pressure on the CpG dinucleotides of viral genomes in arthropod vectors directly opposes the pressure present in vertebrate host cells, which provides evidence that an adaptive compromise is required for arbovirus transmission. This suggests that the genome composition of arbo flaviviruses is crucial to maintain the balance between high-level replication in the vertebrate host and persistent replication in the mosquito vector.


Assuntos
Evolução Molecular , Genoma Viral/genética , Interações Hospedeiro-Patógeno/genética , Zika virus/genética , Células A549 , Aedes/virologia , Animais , Composição de Bases/fisiologia , Sequência de Bases/genética , Linhagem Celular , Chlorocebus aethiops , Ilhas de CpG/fisiologia , Fosfatos de Dinucleosídeos/análise , Fosfatos de Dinucleosídeos/genética , Adaptação ao Hospedeiro/genética , Humanos , Masculino , Mamíferos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , RNA Viral/química , RNA Viral/genética , Seleção Genética/fisiologia , Células Vero , Infecção por Zika virus/genética , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia
15.
Jpn J Infect Dis ; 74(2): 148-150, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32741926

RESUMO

Dengue fever outbreaks have been repeatedly reported in Côte d'Ivoire. During the 2019 outbreak, DENV-1 was the predominant strain and phylogenetic analysis of the DENV-1 genome obtained from the present patient who returned to Japan in January 2019 revealed a high homology with the 2013-2014 Southeast Asian strains. In a previous outbreak in 2017, DENV-1 accounted for 5% of the DENV serotypes. The endemic DENV-1 strain in Abidjan in 2019 could be a strain that was imported from Southeast Asia. Dengue virus can spread globally, and imported dengue fever cases could serve as an alert for outbreaks in the exporting country.


Assuntos
Vírus da Dengue/genética , Dengue/epidemiologia , Surtos de Doenças , Adulto , Anticorpos Antivirais , Côte d'Ivoire/epidemiologia , Vírus da Dengue/isolamento & purificação , Genótipo , Humanos , Japão/epidemiologia , Masculino , Filogenia , Sorogrupo
16.
Vaccines (Basel) ; 8(3)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887302

RESUMO

Zika virus (ZIKV) is the etiological agent of congenital Zika syndrome (CZS), a spectrum of birth defects that can lead to life-long disabilities. A range of vaccines are in development with the target population including pregnant women and women of child-bearing age. Using a recently described chimeric flavivirus vaccine technology based on the novel insect-specific Binjari virus (BinJV), we generated a ZIKV vaccine (BinJ/ZIKA-prME) and illustrate herein its ability to protect against fetal brain infection. Female IFNAR-/- mice were vaccinated once with unadjuvanted BinJ/ZIKA-prME, were mated, and at embryonic day 12.5 were challenged with ZIKVPRVABC59. No infectious ZIKV was detected in maternal blood, placenta, or fetal heads in BinJ/ZIKA-prME-vaccinated mice. A similar result was obtained when the more sensitive qRT PCR methodology was used to measure the viral RNA. BinJ/ZIKA-prME vaccination also did not result in antibody-dependent enhancement of dengue virus infection or disease. BinJ/ZIKA-prME thus emerges as a potential vaccine candidate for the prevention of CSZ.

17.
Antimicrob Agents Chemother ; 64(12)2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-32958718

RESUMO

Favipiravir is an oral broad-spectrum inhibitor of viral RNA-dependent RNA polymerase that is approved for treatment of influenza in Japan. We conducted a prospective, randomized, open-label, multicenter trial of favipiravir for the treatment of COVID-19 at 25 hospitals across Japan. Eligible patients were adolescents and adults admitted with COVID-19 who were asymptomatic or mildly ill and had an Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1. Patients were randomly assigned at a 1:1 ratio to early or late favipiravir therapy (in the latter case, the same regimen starting on day 6 instead of day 1). The primary endpoint was viral clearance by day 6. The secondary endpoint was change in viral load by day 6. Exploratory endpoints included time to defervescence and resolution of symptoms. Eighty-nine patients were enrolled, of whom 69 were virologically evaluable. Viral clearance occurred within 6 days in 66.7% and 56.1% of the early and late treatment groups (adjusted hazard ratio [aHR], 1.42; 95% confidence interval [95% CI], 0.76 to 2.62). Of 30 patients who had a fever (≥37.5°C) on day 1, times to defervescence were 2.1 days and 3.2 days in the early and late treatment groups (aHR, 1.88; 95% CI, 0.81 to 4.35). During therapy, 84.1% developed transient hyperuricemia. Favipiravir did not significantly improve viral clearance as measured by reverse transcription-PCR (RT-PCR) by day 6 but was associated with numerical reduction in time to defervescence. Neither disease progression nor death occurred in any of the patients in either treatment group during the 28-day participation. (This study has been registered with the Japan Registry of Clinical Trials under number jRCTs041190120.).


Assuntos
Amidas/administração & dosagem , Antivirais/administração & dosagem , Tratamento Farmacológico da COVID-19 , Pirazinas/administração & dosagem , SARS-CoV-2/efeitos dos fármacos , Carga Viral/efeitos dos fármacos , Adolescente , Adulto , Amidas/efeitos adversos , Antivirais/efeitos adversos , Doenças Assintomáticas , COVID-19/fisiopatologia , COVID-19/virologia , Feminino , Hospitalização , Humanos , Hiperuricemia/induzido quimicamente , Hiperuricemia/diagnóstico , Hiperuricemia/fisiopatologia , Japão , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Pirazinas/efeitos adversos , Distribuição Aleatória , SARS-CoV-2/patogenicidade , Prevenção Secundária/organização & administração , Índice de Gravidade de Doença , Tempo para o Tratamento/organização & administração , Resultado do Tratamento
18.
Viruses ; 12(8)2020 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-32824338

RESUMO

Lymphocytic choriomeningitis virus (LCMV) is a prototypic arenavirus. The function of untranslated regions (UTRs) of the LCMV genome has not been well studied except for the extreme 19 nucleotide residues of both the 5' and 3' termini. There are internal UTRs composed of 58 and 41 nucleotide residues in the 5' and 3' UTRs, respectively, in the LCMV S segment. Their functional roles have yet to be elucidated. In this study, reverse genetics and minigenome systems were established for LCMV strain WE and the function of these regions were analyzed. It was revealed that nucleotides 20-40 and 20-38 located downstream of the 19 nucleotides in the 5' and 3' termini, respectively, were involved in viral genome replication and transcription. Furthermore, it was revealed that the other internal UTRs (nucleotides 41-77 and 39-60 in the 5' and 3' termini, respectively) in the S segment were involved in virulence in vivo, even though these regions did not affect viral growth capacity in Vero cells. The introduction of LCMV with mutations in these regions attenuates the virus and may enable the production of LCMV vaccine candidates.


Assuntos
Genoma Viral , Vírus da Coriomeningite Linfocítica/crescimento & desenvolvimento , Vírus da Coriomeningite Linfocítica/genética , Regiões não Traduzidas/fisiologia , Células A549 , Animais , Chlorocebus aethiops , Feminino , Humanos , Vírus da Coriomeningite Linfocítica/patogenicidade , Camundongos , Mutação , RNA Viral/química , Genética Reversa , Organismos Livres de Patógenos Específicos , Células Vero , Virulência , Replicação Viral
19.
Viruses ; 12(7)2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629892

RESUMO

We previously showed that the growth ability of the Japanese encephalitis virus (JEV) genotype V (GV) strain Muar is clearly lower than that of the genotype I (GI) JEV strain Mie/41/2002 in murine neuroblastoma cells. Here, we sought to identify the region in GV JEV that is involved in its low growth potential in cultured cells. An intertypic virus containing the NS1-3 region of Muar in the Mie/41/2002 backbone (NS1-3Muar) exhibited a markedly diminished growth ability in murine neuroblastoma cells. Moreover, the growth rate of a Muar NS2A-bearing intertypic virus (NS2AMuar) was also similar to that of Muar in these cells, indicating that NS2A of Muar is one of the regions responsible for the Muar-specific growth ability in murine neuroblastoma cells. Sequencing analysis of murine neuroblastoma Neuro-2a cell-adapted NS1-3Muar virus clones revealed that His-to-Tyr mutation at position 166 of NS2A (NS2A166) could rescue the low replication ability of NS1-3Muar in Neuro-2a cells. Notably, a virus harboring a Tyr-to-His substitution at NS2A166 (NS2AY166H) showed a decreased growth ability relative to that of the parental virus Mie/41/2002, whereas an NS2AMuar-based mutant virus, NS2AMuar-H166Y, showed a higher growth ability than NS2AMuar in Neuro-2a cells. Thus, these results indicate that the NS2A166 amino acid in JEV is critical for the growth and tissue tropism of JEV in vitro.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/crescimento & desenvolvimento , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Motivos de Aminoácidos , Animais , Linhagem Celular , Vírus da Encefalite Japonesa (Espécie)/química , Vírus da Encefalite Japonesa (Espécie)/genética , Genoma Viral , Genótipo , Humanos , Camundongos , Proteínas não Estruturais Virais/metabolismo
20.
NPJ Vaccines ; 5(1): 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32550013

RESUMO

The Sementis Copenhagen Vector (SCV) is a new vaccinia virus-derived, multiplication-defective, vaccine technology assessed herein in non-human primates. Indian rhesus macaques (Macaca mulatta) were vaccinated with a multi-pathogen recombinant SCV vaccine encoding the structural polyproteins of both Zika virus (ZIKV) and chikungunya virus (CHIKV). After one vaccination, neutralising antibody responses to ZIKV and four strains of CHIKV, representative of distinct viral genotypes, were generated. A second vaccination resulted in significant boosting of neutralising antibody responses to ZIKV and CHIKV. Following challenge with ZIKV, SCV-ZIKA/CHIK-vaccinated animals showed significant reductions in viremias compared with animals that had received a control SCV vaccine. Two SCV vaccinations also generated neutralising and IgG ELISA antibody responses to vaccinia virus. These results demonstrate effective induction of immunity in non-human primates by a recombinant SCV vaccine and illustrates the utility of SCV as a multi-disease vaccine platform capable of delivering multiple large immunogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA